ISSN: 2394 -7985

COMPARISON OF AEROBIC AND ANAEROBIC CAPACITY AMONG THE JUNIOR AGE GROUP FOOTBAL AND HOCKEY PLAYERS

Gaikwad Suresh P.*

*J.S.P.M. College of Physical Education, Pusad (M.S)-INDIA.

E. Mail: sureshpgaikwad@gmail.com

ABSTRACT

Fifteen male players of Football and Hockey each from Maharashtra state who participated in junior age groups (14-1 7years) of state and national level competitions were selected randomly as the subjects of this study. Cooper's 12 min Run-Walk test was administered and recorded the distance covered in miles and the Aerobic capacity of the players was determined by using the equation, V02max=35. 9712('distance in miles for 12 min run-walk) -11.2878, and expressed in ml/kg/min. To determine the anaerobic capacity, Sargent Jump-Lewis Nomogram was employed and anaerobic power was expressed in kg. rn/sec. By the Descriptive Analysis, the mean and standard deviation of Aerobic capacity for Football and Hockey groups were 41.66±7.99 and 41.50±9.11 respectively, and the mean and standard deviation of Anaerobic capacity for Football and Hockey groups were ,100.20±8.65 and 93.93±9.18. Further, by applying the Independent 't' test it was evident that there was no significant difference between the means of Football and Hockey players on the scores of Aerobic capacity since the obtained value of 't' (-.050) was less than the tabulated value of 't' (2.048) which was required to be significant with 28 degree of freedom at 0.05 level of confidence. It was also further evident that there was no significant difference between the means of Football and Hockey players on the scores of Anaerobic capacity since the obtained value of 't' (-1.075) was less than the tabulated value of 't'(2.048) which was required to be significant with 28 degree offreedom at 0.05 level of confidence. Therefore, there was no significant difference on aerobic and anaerobic capacity between junior football and hockey players.

Keywords: Aerobic, Anaerobic Capacity, Junior Age Group, Football & Hockey Players. INTRODUCTION

Organisms carry different capacity level; depend on their anatomical, anthropometrical, physiological and different training loads and systems. However, the athlete is to be conditioned to adopt to work at given intensity for prolonged time which is known as aerobic training and he is also required to be conditioned to do explosive work of high intensity in short duration of time

'Curiosity is the best Quality of a Good Researcher'

Page 1

which is known as anaerobic training. Aerobic capacity is the ability to mobilize energy for continuous performance of specific movement for prolonged time i.e. capacity for prolonged physiological functioning under continuous supply of required oxygen completely available under conditions and the glucose molecule is completely broken down to CO2 and H20, and energy is made available as needed. To enable a person to continue an activity for prolonged period, continuous flow of oxygen has to be ensured to the working muscles for liberation of energy. The aerobic capacity of a person can be measured by the maximum amount of oxygen consumed by the working muscles in one minute (V02 max).

The aerobic capacity (V02 max) of a person depends upon the factors as: amount of oxygen which can be extracted by the blood from the atmosphere, amount of oxygen that can be transported from the lungs to the working muscles, amount of Oxygen taken up by the muscle cells from the blood, amount of oxygen of glycogen stores in the muscles and liver.

Anaerobic capacity is the ability to mobilize energy during activities of intense nature i.e. executing intensive work with explosive action in short duration of time, such as kicking the football faster and for explosive take-off in jumps, maximum rate for about two to three minutes under water swimming etc. It is the ability to perform at maximal capacity for short periods of time and to minimize the amount of lactic acid production in the working muscles at a level of insufficient oxygen availability.

The games of Soccer and Hockey, players carry the similar type of activities in nature or work out. Soccer and Hockey are also high coordinated games on the basis techniques, tactics and' nature of skill Both the games require high mot quality of performance. Soccer at hockey players frequently perform different rapid and sudden movement as quick development of fore sprinting, jumping, changing direction high power shooting, different body impacts etc. Therefore the players require high-intensity anaerobic capacity to perform various burst actions in actual situations. On the other hand, Football and Hock games are played for a long duration 90min and 70min or more respectively. Therefore, both games need high efficient aerobic capacity tolerate the tempo of the games.

OBJECTIVE OF THE STUDY

The objective of the study w to compare the aerobic and anaerobic capacity among the junior age group Football and Hockey players.

METHODOLOGY

The subjects for this study we selected randomly among the m Football and Hockey players those who participated in the junior a groups of state and national le between 14-17 years of age. Ea Football and Hockey group consist of 15 players. Independent't' test applied with regards to Football a Hockey groups and the random group design was employed in this study. The level of significant was set at 0.05 level of confidence.

'Curiosity is the best Quality of a Good Researcher'

Page 2

FINDINGS

Section One

The findings pertaining Football and Hockey groups mean and standard deviations were computed by the descriptive analysis and presented in table-1

Table-1
MEAN AND STANDARD DEVIATION OF FOOTBALL GROUP
AND HOCKEY GROUP

Variables	Groups	N	Mean	Std. Deviation
Aerobic Capacity	Football	15	41.66	7.99
(ml kg min)	Hockey	15	41.50	9.11
Anarobic Capacity	Football	15	100.20	8.65
(kg.m/sec)	Hockey	15	93.93	9.18

Table-1 reveals that the mean and standard deviation of Aerobic capacity for Football group 41.66 ± 7.99 and Hockey group 41.50 ± 9.11 , and Anaerobic capacity for Football group 100.20 ± 8.65 and Hockey group 93.93 ± 9.18 .

Section Two

To observe the difference between Football and Hockey groups the independent 't' test was employed and presented in Table - 2 and 3

Table -2
SIGNIFICANT DIFFERENCE OF MEAN IN AEROBIC CAPACITY BETWEEN THE
FOOTBALL AND HOCKEY PLAYERS

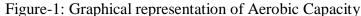
variable	Group Mean		Mean	SE	't'
	Football	Hockey	Diff.		
Aerobic Capacity	41.66	41.50	0.16	3.13	.050®

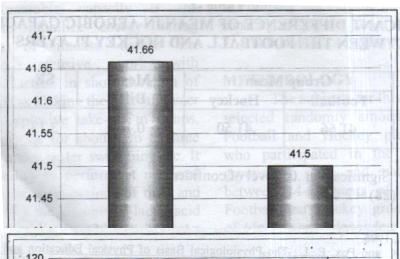
[@]Not Significant at .05 level of confidence $t_{.0}5$ (28) = 2.048

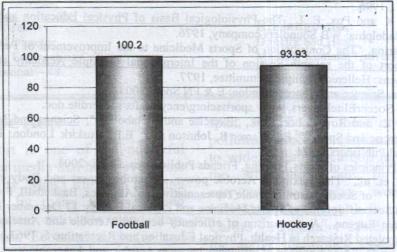
It is evident from Table -3 that there was no significant difference between the means of Football and Hockey players on the scores of Aerobic capacity since the obtained value of 't' (0.05) was less than the tabulated value of 't' (0.048) which was required to be significant at 0.05 level of confidence with 28 degrees of freedom.

Table -3
SIGNIFICANT DIFFERENCE OF MEAN IN ANAEROBIC CAPACIT
BETWEEN THE FOOTBALL AND HOCKEY PLAYERS

y	Group Mean		Maan	C4J	
Variable	Football Players	Hockey Players	Mean Diff.	Std. Error	't'
Anaerobic Capacity	100.20	93.93	6.27	5.83	1.075 [@]


'Curiosity is the best Quality of a Good Researcher'


ISSN: 2394 -7985 **VOLUME: IV**


FEBRUARY 2018

[@]Not Significant at .05 level of confidence t.05 (28) = 2.048

It is evident from Table-3 that there was no significant difference between the means of Football and Hockey players on the scores of Anaerobic capacity since the obtained value of 't' (1.075) was less than the tabulated value of 't' (2.048) which was required to be significant at 0.05 level of confidence with 28 degrees of freedom. The graphical representations of mean difference are shown in Figure-1 and 2.

DECUSSION AND CONCLUSION

In the light of the findings, no difference was found the junior age group Football and hockey players on the variables of anaerobic capacity. This difference might be the fact that the nature of the games (Football and Hockey) demand more or less equal amount of physical and physiological effort. The tempo of the games is more or less similar and that might be the basis of transfer of training of both the games. Thus, it was concluded that there was no significant difference in aerobic and anaerobic capacity in between junior Football and Hockey players.

ISSN: 2394 –7985 PEER REVIEWED ONLINE VOLUME: IV ISSUE: II FEBRUARY 2018

REFERENCES

- Astrand P.O. and Rodhal K., <u>Test Book of work physiology</u>, New York: McGraw Hill, 1970.
- Astrand P.O. "Aerobic and Anaerobic Energy Sources in Exercise, "Physiological Chemistry of
 - Exercise and Training, Vol. 13 Basel: Karger, 1981.
- Barrow, H.M. and Nary, R. M., <u>A Practical Approach to Measurement in Physical Education</u>, Philadelphia: Lea and Febiger, 1979,
- Bhanot, J.L., and Sidhu. L.S., "Maximal Anaerobic Power in Indian National Hockey Players," <u>British Journal of Sports Medicine</u>, Vol. 17, No. 1, March, 1983.
- Caru, et.al, "Maximal Aerobic and Anaerobic Muscular Power in Football Players, "The Journal of Sports Medicine and Physical Fitness 10:2 June 1970.
- Colemen A. et. al. "Aerobic and Anaerobic Responses of Male College Freshmen during season of Basketball, "Journal of sports medicine and Physical Fitness 14, June 1974.
- Hoff J. et. al., "Soccer Specific Aerobic Enhance Training, "British Journal of Sports Medicine, vol. 36, No, 3, June 2002.
- Kansal, D. K., <u>Test and measurement in Sports and Physical Education</u>, New Delhi DVS Pub., 1996.
- Mathews, D. K. and Fox, E. L., <u>The Physiological Basis of Physical Education and Athletics</u>, Philadelphia: WB Soundlers company, 1976.
- Prokoyo Ludaring, "The Contribution of Sports Medicine to the Improvement of Performance," Report of the seventh Session of the International Olympic Academy Olympia, Athens: Hellenic Olympic Committee, 1977.
- Reilly Thomas, Science and Soccer London: E & IN Spon, 2003.
- SanzeJ.Rico-, SoccerElitePlayers, www.sportssciorgIency/drafts/socerdite.doc.'
- Taylor Henry L. and Rowell Loring B., "Exercise and Metabolism"; <u>Science and Medicine of Exercise and sport</u> 2nd Ed, Warren R. Johnson and E.R. Buskirk London: Her! Roul Publishers, 1974.
- Uppal, A.K., Principles of sports Training, Friends Publications, Delhi 2001.
- Weither R. T et. al., "The maximum Aerobic power, and Body composition of South Australian male representatives in Athletics, Basketball, Field I and Soccer, "Journal of Sports Medicine and Physical Fitness: 17 December 1977.
- Wilgus William Eugene, "A comparison of efficiency between Aerobic and Anaerobic Work," Completed Research in Health, Physical Education and Recreation: 5, 1963.
- Wilgus, William E., "A comparison of efficiency between Aerobic and Anaerobic work," Completed Research in Health, Physical Education and Recreation 5, 1963.